谷歌浏览器插件
订阅小程序
在清言上使用

Surface-tuning TiO2 NR photoanodes using CoOx interlayers and NiFe-LDH cocatalysts for photoelectrochemical wastewater treatment.

Chemosphere(2024)

引用 0|浏览4
暂无评分
摘要
Increasing multidrug-resistant pathogenic microbial around the world become a global problem, making it imperative to develop effective methods for bacterial inactivation in wastewater. In this study, we propose a multifunctional photoelectrochemical (PEC) system to successfully disinfect microbial cells and degrade orange (II) dyes. CoOx NP were synthesized by spin-coating onto hydrothermally synthesized TiO2 nanorod arrays followed by electrodeposited NiFe-LDH to develop the NiFe-LDH/CoOx NP-TiO2 NRs. Interestingly, spin-coated CoOx NP-TiO2 NRs exhibited a 1.5-fold enhancement in photocurrent (1.384 mA/cm2) than pristine TiO2 NRs (0.92 mA/cm2). A NiFe-layered double hydroxide (LDH) cocatalysts layer further exhibits the maximum photocurrent density of 1.64 mA/cm2 with IPCE of 84.5% at 1.0 VAg/AgCl at 380 nm. Furthermore, NiFe-LDH/CoOx-TiO2 NR photoanodes were effectually employed for photoelectrochemical bacteria disinfection and organic pollutant removals. With NiFe-LDH/CoOx-TiO2 NR, 99% (120 min) bacterial inactivation and 99% (60 min) orange II dye decomposition efficiency was achieved. Superoxide radicals (-O2•), hydroxyl radicals (HO•), and holes (h+) played a critical role in the PEC degradation systems. Due to the synergy between NiFe-LDH cocatalyst and CoOx interlayer, surface water oxidation reactions were accelerated over NiFe-LDH/CoOx NP-TiO2 NRs. The charge transport process in NiFe-LDH/CoOx NP-TiO2 NRs photoanode-based PEC system was proposed in detail.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要