Element composition of several marine macrophytes (Crimea, Black Sea) and correlations with the element abundances in sediments and seawater.

Vitaliy I Ryabushko,Elena V Gureeva,Sergey V Kapranov, Alexander V Prazukin, Alexander M Toichkin, Mikhail V Simokon,Nikolay I Bobko

Environmental research(2024)

引用 0|浏览0
暂无评分
摘要
The study of the element accumulation in marine plants against the backdrop of permanently increasing environmental pollution is of particular importance due to the participation of these plants in biogeochemical cycles. The element abundances are highly variable and depend on both the macrophyte species and environment. The purpose of this study was to analyze the elemental composition of widespread marine plants of different taxonomic affiliations collected in the same area of the Black Sea coast. The contents of 74 elements in three species of lower (red, brown, green algae) and one species of higher plants (seagrass) were analyzed using inductively coupled plasma mass spectrometry. High contents of most elements were found in the red alga Ceramium ciliatum and in rhizomes of the seagrass Zostera noltei. In C. ciliatum, high metal bioaccumulation factors were found, which are dependent also on their concentration in the environment. Compared to the higher plant, all the macroalgae accumulated increased amounts of As and I. The seagrass proved to be a good concentrator of Mo and Sb, and relatively high contents of Mn, Co, Ni, Zn, Cd and Ir were registered in its leaves. High contents of Mg, S, Ge, Se and Ta were found in the green alga Ulva rigida, and elevated levels of Al, As, Sr, Zr, Ru, Rh, Pd, Ag, Ba and Re were noted in the brown alga Gongolaria barbata. The enrichment factors for most elements in the sediments were well above 1 with respect to both the local Late Pleistocene sediments and the upper continental crust. The strength of correlations between the element contents in the plants and sediments was found to decrease with the specific surface area growth and appeared to have a lower asymptotic limit of the sediments-seawater correlation strength.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要