Chrome Extension
WeChat Mini Program
Use on ChatGLM

Bioactive compounds from dichloromethane extract of Artemisia rupestris L. alleviates CCl4/ConA-induced acute liver injury by inhibiting PI3K-AKT pathway.

Xiaoxia Cai, Maidina Kuerban,Hamulati Hasimu,Qin Dou,Jiang He,Yuan Liu,Yuebu Hailai, Abulimiti Abulielimu, Ayinigeer Maimaitiaili, Peipei Wang, Wenwen Zhou,Jun Zhang,Silafu Aibai, Xieraili Tuerxun,Bo Han

Journal of ethnopharmacology(2024)

Cited 0|Views13
No score
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE:Artemisia rupestris L. (AR) is a traditional medicinal herb commonly used in the Uyghurs and Kazakhs; it was first documented in the Supplement to Compendium of Materia Medica written by Zhao Xuemin in the Qing Dynasty of China and is used clinically to treat colds, hepatitis, and allergic diseases. AIM OF THE STUDY:The material basis and mechanisms of AR in acute liver injury (ALI) remain unclear. The purpose of this study was to reveal the possible active components involved in liver protection in AR and to preliminarily explore their pharmacological mechanisms. MATERIALS AND METHODS:The chemical composition of the ethanolic extract (ARA) was identified by UPLC-Q-Exactive-MS/MS and confirmed by 32 reference standards. The pharmacodynamic results were utilized to screen the active part within the ARA that contribute to the amelioration of CCl4/ConA-induced ALI. The main active components and core targets were predicted by network pharmacology and verified by molecular docking combined with qPCR and Western blotting. RESULTS:A total of 131 chemical components were identified in the ARA. The extraction parts of ARA had different therapeutic effects on ALI, among which the dichloromethane extract (ARA-D), which might constitute the main effective fraction of ARA, had significant anti-ALI effects. The network pharmacology results showed that targets including PIK3R1, AKT1, and EGFR, as well as 7 compounds, such as artemetin, vitexicarpin and rupestonic acid may play pivotal roles in treating CCl4/ConA-induced ALI. GO and KEGG pathway enrichment analyses revealed that the PI3K-AKT signaling pathway was the main pathway involved. In each model, ARA-D dose-dependently reduced the increase in ALT levels. High-dose ARA-D markedly decreased ALT activity from 196.79 ± 24.82 to 66.37 ± 16.19 U/L in the CCl4 model group and from 178.00 ± 28.39 to 50.67 ± 7.39 U/L in the ConA model group. Further studies revealed that ARA-D significantly inhibited TNF-α, IL-1β, and IL-6 expression and inhibited the protein expression of PI3K, p-PI3K, and p-AKT in CCl4/ConA-induced ALI. CONCLUSION:ARA-D exhibits protective effects against ALI induced by CCl4/ConA, potentially through inhibition of the PI3K-AKT signaling pathway. These findings may help to determine the material basis and mechanisms of action of ARA-D for liver protection and provide ideas for future comprehensive studies.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined