A new dataset of rain cells generated from observations of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner and microwave imager

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Abstract. Rain cells are the most common units in the natural precipitation system. Enhancing the understanding of these rain cell characteristics can significantly improve the cognition of the precipitation system. Previous studies have mostly analyzed rain cells from a single radar data. In this study, we merged the precipitation parameters measured by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) with the muti-channel cloud-top radiance measured by the visible and infrared scanner (VIRS) and the muti-channel brightness temperature measured by the TRMM microwave imager (TMI). The rain cells were identified within the PR orbit, and the swath truncation effect was eliminated. We used two methods for rain cell identification: the minimum bounding rectangle (MBR) method and the best fit ellipse (BFE) method, and compared the differences between these two methods in describing the rain cell characteristics. The results indicate that both methods can better reflect the geometric characteristics of rain cells. Compared with the MBR method, the BFE method can obtain a smaller rain cell area, and the filling ratio is better. However, the MBR method can simplify the data storage volume. Consequently, we employed the MBR method to analyze the precipitation structure of two typical rain cell precipitation cases. The results show that the new rain cell dataset can be used for the analysis of rain cell precipitation parameters and visible/infrared and microwave signals, which provides valuable data for comprehensive studies on the rain cell structural characteristics and furthers the understanding of precipitation mechanisms. The data which were used in this paper are freely available at https://doi.org/10.5281/zenodo.8352587 (Wu et al., 2023).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要