Platinum-Iridium Alloy Nanoparticle Coatings Produced by Electrophoretic Deposition Reduce Impedance in 3D Neural Electrodes.

Chemphyschem : a European journal of chemical physics and physical chemistry(2024)

引用 0|浏览3
暂无评分
摘要
Platinum-based neural electrodes frequently alloyed with Ir or W are routinely used for the treatment of neurological conditions. However, their performance is hampered by impaired electrical contact between electrode and tissue that compromises long-term implant stability. Though there are multiple coating techniques available to address this issue, electrode, and base material often exhibit a compositional mismatch, which impairs mechanical stability and may lead to toxicological side effects. In this work we coated Pt wire electrodes with ligand-free electrostatically stabilized colloidal Pt90Ir10, Pt90W10, and Pt50W50 alloy nanoparticles (NPs) matching electrode compositions using electrophoretic deposition (EPD) with direct-current (DC) and pulsed-DC fields in aqueous medium. The generated alloy NPs exhibit a solid solution structure as evidenced by HR-TEM-EDX and XRD, though additional WOx phases were identified in the Pt50W50 samples. Consequently, coating efficiency was also impaired in the presence of high W mass fractions in the alloy NPs. Characterization of the NP coatings by cyclic voltammetry and impedance spectroscopy yielded a significant reduction of the impedance in the Pt90Ir10 sample in comparison to the Pt control. The electrochemical surface area (ECSA) of the PtW alloy coatings, on the other hand, was significantly reduced.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要