Room temperature NH3 gas sensor based on In(OH)3/Ti3C2Tx nanocomposites.

Zhihua Zhao, Longqi Yao,Shuaiwen Zhang, Qingsheng Shi, Abu Bakker Md Rahmatullah,Lan Wu

Mikrochimica acta(2024)

引用 0|浏览3
暂无评分
摘要
Industrialization and agricultural demand have both improved human life and led to environmental contamination. Especially the discharge of a lot of poisonous and harmful gases, including ammonia, ammonia pollution has become a pressing problem. High concentrations of ammonia can pose significant threats to both the environment and human health. Therefore, accurate monitoring and detection of ammonia gas are crucial. To address this challenge, we have developed an ammonia gas sensor using In(OH)3/Ti3C2Tx nanocomposites through an in-situ electrostatic self-assembly process. This sensor was thoroughly characterized using advanced techniques like XRD, XPS, BET, and TEM. In our tests, the I/M-2 sensor exhibited remarkable performance, achieving a 16.8% response to 100 ppm NH3 at room temperature, which is a 3.5-fold improvement over the pure Ti3C2Tx MXene sensor. Moreover, it provides swift response time (20 s), high response to low NH3 concentrations (≤ 10 ppm), and excellent long-term stability (30 days). These exceptional characteristics indicate the immense potential of our In(OH)3/Ti3C2Tx gas sensor in ammonia detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要