Arylazopyrazole-modulated stable dual-mode phototransistors.

Science advances(2024)

引用 0|浏览9
暂无评分
摘要
High-performance organic devices with dynamic and stable modulation are essential for building devices adaptable to the environment. However, the existing reported devices incorporating light-activated units exhibit either limited device stability or subpar optoelectronic properties. Here, we synthesize a new optically tunable polymer dielectric functionalized with photochromic arylazopyrazole units with a cis-isomer half-life of as long as 90 days. On this basis, stable dual-mode organic transistors that can be reversibly modulated are successfully fabricated. The trans-state devices exhibit high carrier mobility reaching 7.4 square centimeters per volt per second and excellent optical figures of merit, whereas the cis-state devices demonstrate stable but starkly different optoelectronic performance. Furthermore, optical image sensors are prepared with regulatable nonvolatile memories from 36 hours (cis state) to 108 hours (trans state). The achievement of dynamic light modulation shows remarkable prospects for the intelligent application of organic optoelectronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要