2D Tantalum Disulfide Reduction Strategy Customized Ta2O5/rGO Heterointerface Aerogel Toward Boosting Electromagnetic Wave Absorption and Flame Retardancy.

Small (Weinheim an der Bergstrasse, Germany)(2024)

Cited 0|Views1
No score
Abstract
The exceptional and substantial electron affinity, as well as the excellent chemical and thermal stability of transition metal oxides (TMOs), infuse infinite vitality into multifunctional applications, especially in the field of electromagnetic wave (EMW) absorption. Nonetheless, the suboptimal structural mechanical properties and absence of structural regulation continue to hinder the advancement of TMOs-based aerogels. Herein, a novel 2D tantalum disulfide (2H-TaS2) reduction strategy is demonstrated to synthesize Ta2O5/reduced graphene oxide (rGO) heterointerface aerogels with unique characters. As the prerequisite, the defects, interfaces, and configurations of aerogels are regulated by varying the concentration of 2H-TaS2 to ensure the Ta2O5/rGO heterointerface aerogels with appealing EMW absorption properties such as a minimum reflection loss (RLmin) of -61.93 dB and an effective absorption bandwidth (EAB) of 8.54 GHz (7.80-16.34 GHz). This strategy provides valuable insights for designing advanced EMW absorbers. Meanwhile, the aerogel exhibits favorable thermal insulation performance with a value of 36 mW m-1 K-1, outstanding fire resistance capability, and exceptional mechanical energy dissipation performance, making it promising for applications in the aerospace industry and consumer electronics devices.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined