Chrome Extension
WeChat Mini Program
Use on ChatGLM

Sources and factors influencing lacustrine carbon burial over the last century: case study of Yinjia Lake, central China

Changlin Zhan, Dejun Wan, Yongming Han, Shan Liu, Jiaquan Zhang,Hongxia Liu,Tianpeng Hu, Wensheng Xiao, Junji Cao

Journal of Paleolimnology(2024)

Cited 0|Views10
No score
Abstract
Lakes act as natural reservoirs for storing organic material, and comprehending how organic carbon (OC) and black carbon (BC) are deposited in lake sediments is crucial for understanding the global carbon cycle and its impact on climate and ecosystems. In this study, we examined changes in the deposition patterns of OC and BC in Yinjia Lake (YJL) over the past 110 years, using a 60 cm sediment core dated with 210Pb. Our aim was to discern how these changes relate to human activities and other influencing factors in the region of southeast Hubei, central China. Our findings revealed a consistent rise in total organic carbon (TOC) and total nitrogen (TN) concentrations, indicating a gradual increase from the bottom upwards. Analysis of C/N ratios and δ13C values showed that the OC in the sediment mainly originated from phytoplankton and terrestrial C3 plants. Over the past century, OC burial rates (OCBR) in the YJL core increased from 61.35 to 86.69 g m−2 yr−1, primarily due to increased primary production resulting from intensified local agriculture and urban growth. Temperature was found to influence OCBR, while precipitation had little impact on OCBR dynamics in sedimentary environments. BC burial rates in YJL ranged from 3.67 to 11.51 g m–2 yr–1, significantly exceeding those observed in other lakes worldwide. The fluctuations in BC burial rates correlated with shifts in local industrial practices and energy consumption. In recent years (post-2005), BC burial rates have declined, likely due to reduced pollutant emissions resulting from the implementation of emission-control policies in China. These results provide valuable insights into the interactions between human activities, climate variability, and carbon cycling in lacustrine environments, with implications for regional carbon budgets, ecosystem management, and climate-change mitigation strategies.
More
Translated text
Key words
Organic carbon burial,Black carbon,Lake sediment,Human activities
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined