Exploring the puzzle of Reactive Oxygen Species (ROS) acting on root hair cells.

Leonel E Lopez, Miguel A Ibeas,Gabriela Diaz Dominguez,Jose M Estevez

Journal of experimental botany(2024)

Cited 0|Views0
No score
Abstract
Reactive oxygen species (ROS) are essential signaling molecules that enable cells to respond rapidly to a range of stimuli. The capacity of plants to recognize various stressors, incorporate a variety of environmental inputs, and initiate stress-response networks depends on ROS. Plants develop resilience and defensive systems as a result of these processes. Root hairs (RHs) are central components of the root biology since they increase the surface area of the root, anchor it in the soil, increase its ability to absorb water and nutrients, and foster interactions between microorganisms. In this review, we specifically focused on RHs cells and we highlighted the identification of ROS receptors, important new regulatory hubs that connect ROS production, transport, and signaling in the context of two hormonal pathways (auxin and ethylene) and under low temperature environmental input related to nutrients. As ROS plays a crucial role in regulating cell elongation rates, RHs are rapidly gaining traction as a very valuable single plant cell model for investigating ROS homeostasis and signaling. These promising findings might soon aid in the development of plants and roots that are more resilient to environmental stressors.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined