Effect of pile-head breaking methods on the triaxial creep behavior of a concrete: a constitutive modeling approach

Haikuan Wu, Hangqi Zhang,Shun Kang,Xin Zhang, Yongyi Yang, Xudong Yang,Rongxi Shen,Baoxian Liu,Xun Yuan,Zhile Shu

Mechanics of Time-Dependent Materials(2024)

引用 0|浏览2
暂无评分
摘要
This study investigated the long-term creep behavior of concrete in drilled shafts using conventional and soft-cutting head techniques, focusing on their propensity for internal defects and crack propagation under sustained loading. Triaxial creep tests were performed on concrete specimens subjected to multistage loading to examine the axial- and radial-creep responses associated with each cutting-head method. The findings reveal that concrete prepared with conventional cutting heads exhibits a higher susceptibility to creep failure, attributed to an increased presence of internal defects. In contrast, specimens using soft-cutting heads demonstrated reduced axial- and radial-creep deformations. Concrete cured in laboratory conditions and those cut with soft-cutting heads at various elevations predominantly experienced shearing failures, whereas specimens with soft-cutting heads positioned at higher elevations were more prone to radial tension-shear failures. Considering the Burgers model and fractional-order theory, we introduce a one-dimensional nonlinear damage creep model, alongside a more comprehensive three-dimensional damage creep model. Validation of these models confirms their effectiveness in describing the creep behavior of concrete under different cutting-head disturbances. Importantly, our analysis suggests that the role of soft-cutting head methods on the integrity of cast-in-place concrete piles is comparatively minimal. This insight underscores the potential for optimizing pile-head breaking techniques to mitigate creep-related failures in concrete structures.
更多
查看译文
关键词
Drilled shafts,Soft-cutting heads,Long-term loading,Creep,Constitutive model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要