Exploring a Reversible Adaptation of Conventional HPLC for Capillary-Scale Operation

Edwin Martin Cardenas Contreras, Elton Tanis, Fernando Mauro Lanças, Deyber Arley Vargas Medina

Journal of Chromatography A(2024)

引用 0|浏览3
暂无评分
摘要
This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV-vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV-vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.
更多
查看译文
关键词
Miniaturization,Instrumentation,capillary-LC,capillary columns,capillary-flowrates.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要