HIFAST: An HI Data Calibration and Imaging Pipeline for FAST II. Flux Density Calibration

Ziming Liu, Jie Wang,Yingjie Jing, Zhiyu Zhang, Chen Xu,Qingze Chen,Ningyu Tang, Qingliang Yang, Tiantian Liang

Research in Astronomy and Astrophysics(2024)

引用 0|浏览0
暂无评分
摘要
Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments. In this research, we introduce the flux calibration model incorporated in HIFAST pipeline, designed for processing HI 21-cm spectra. Furthermore, we investigate different calibration techniques and assess the dependence of the gain parameter on the time and environmental factors. A comparison is carried out in various observation modes (e.g. tracking and scanning modes) to determine the flux density gain (G), revealing insignificant discrepancies in G among different methods. Long-term monitoring data shows a linear correlation between G and atmospheric temperature. After subtracting the G - Temperature dependence, the dispersion of G is reduced to <3% over a one-year time scale. The stability of the receiver response of FAST is considered sufficient to facilitate HI observations that can accommodate a moderate error in flux calibration (e.g., >~5%) when utilizing a constant G for calibration purposes. Our study will serve as a useful addition to the results provided by Jiang et al (2020). Detailed measurements of G for the 19 beams of FAST, covering the frequency range 1000 MHz - 1500 MHz can be found on the HIFAST homepage: https://hifast.readthedocs.io/fluxgain
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要