Ethane under pressure revisited using x-ray diffraction, Raman spectroscopy, infrared absorption, and ab initio calculations up to 150 GPa.

The Journal of chemical physics(2024)

引用 0|浏览0
暂无评分
摘要
Ethane (C2H6) is anticipated to be the most stable compound within the carbon-hydrogen system under the 100 GPa pressure range. Nevertheless, the properties of ethane under pressure are still poorly documented. Here, we present a comprehensive study of the structural and vibrational properties of C2H6 in a diamond anvil cell at pressures up to 150 GPa. To obtain detailed data, ethane single-crystal was grown in a helium pressure-transmitting medium. Utilizing single-crystal x-ray diffraction, the distortion mechanism between the tetragonal and monoclinic phases, occurring over the 3.2-5.2 GPa pressure range, is disclosed. Subsequently, no phase transition is observed up to 150 GPa. The accurately measured compression curve is compared to various computational approximations. The vibrational modes measured by Raman spectroscopy and infrared absorption are well identified, and their evolution is well reproduced by ab initio calculations. In particular, an unusual anticrossing phenomenon occurs near 40 GPa between a rocking and a stretching mode, likely attributable to intermolecular interactions through hydrogen bonding.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要