谷歌浏览器插件
订阅小程序
在清言上使用

Finding Diverse Solutions Parameterized by Cliquewidth

Karolina Drabik,Tomáš Masařík

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
Finding a few solutions for a given problem that are diverse, as opposed to finding a single best solution to solve the problem, has recently become a notable topic in theoretical computer science. Recently, Baste, Fellows, Jaffke, Masařík, Oliveira, Philip, and Rosamond showed that under a standard structural parameterization by treewidth, one can find a set of diverse solutions for many problems with only a very small additional cost [Artificial Intelligence 2022]. In this paper, we investigate a much stronger graph parameter, the cliquewidth, which can additionally describe some dense graph classes. Broadly speaking, it describes graphs that can be recursively constructed by a few operations defined on graphs whose vertices are divided into a bounded number of groups while each such group behaves uniformly with respect to any operation. We show that for any vertex problem, if we are given a dynamic program solving that problem on cliquewidth decomposition, we can modify it to produce a few solutions that are as diverse as possible with as little overhead as in the above-mentioned treewidth paper. As a consequence, we prove that a diverse version of any MSO_1 expressible problem can be solved in FPT time parameterized by cliquewidth, the number of sought solutions, and the number of quantifiers in the formula. That was an important missing piece in the complexity landscape of structural graph parameters and logic. We prove our results allowing for a more general natural collection of diversity functions compared to only two mostly studied diversity functions previously. That might be of independent interest as a larger pool of different diversity functions can highlight various aspects of different solutions to a problem.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要