Mechanism of anatase-to-columbite TiO2 phase transformation via sheared phases: first-principles calculations and high-pressure torsion experiments

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
High-pressure torsion (HPT) can facilitate phase transformations in titanium dioxide (TiO2) and stabilize its high-pressure columbite phase, as an active photocatalyst, by shear straining under high pressure. This study aims to understand the mechanism underlying the acceleration of the anatase-to-columbite phase transformation by shear strain. A mechanism by considering sheared crystal structures as intermediate phases was proposed and examined using quantum mechanics in the framework of density functional theory (DFT) and HPT experiments. DFT energy and phonon calculations demonstrated the viability of the sheared structures as intermediate phases. Furthermore, the sheared structures were observed experimentally as new metastable phases using high-resolution transmission electron microscopy. These findings can explain the significant effect of shear strain on pressure-induced phase transitions, reported during severe plastic deformation of various metals and ceramics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要