Injury distance limits the transcriptional response to spinal injury.

Zimei Wang, Manojkumar Kumaran, Elizabeth Batsel, Sofia Testor-Cabrera, Zac Beine, Alicia Alvarez Ribelles,Pantelis Tsoulfas,Ishwariya Venkatesh,Murray G Blackmore

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown. Here we employed single-nuclei sequencing in mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury triggered only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Moreover, CST neurons also responded minimally to cervical injury but much more strongly to intracortical axotomy, including upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neuron to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited sensing of distant injuries and the subsequent modest baseline neuronal response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要