Hybrid Gold-Based Perovskite Derivatives: Synthesis, Properties, and Prospects in Photovoltaics

Inorganics(2024)

Cited 0|Views0
No score
Abstract
Hybrid gold-based perovskite derivatives typically exhibit low optical bandgaps and high optical absorption coefficients, rendering them promising for photovoltaic applications. In this study, we successfully synthesized six new hybrid gold-based perovskite derivatives, namely [(C6H8N2)(AuI4)(AuI2)](3AMPY), [(C6H14N2)(AuI4)(AuI2)](3AMP), [(C8H12N)(AuI4)](2PEAI), [(C4H14N2O)(AuI4)2](OBA), [(C6H18N2O2)3(AuI4)4(I3)2](DDA), and [(C10H26N2O3)(AuI4)(I3)](TOTA), through a straightforward and efficient hydrothermal method, achieving millimeter-sized single crystals. The structural analysis of the single crystals revealed variations in crystal structures arising from differences in constituent units and their spatial positioning relationships. First-principles calculations ascertained their high optical absorption coefficients in the visible light spectrum and indirect bandgap properties. Theoretical models indicated that the spectroscopic limited maximum efficiency (SLME) values of 3AMPY, 2PEAI, DDA, and TOTA approached approximately 30% in films of 0.5 μm thickness, signifying their potential candidacy as solar cell absorbers.
More
Translated text
Key words
gold-based perovskite,perovskite-derivative properties,single crystal,first-principles calculations,solar cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined