Optimizing a self-solidifying hydrogel as an endoscopically deliverable hydrogel coating system: a proof-of-concept study on porcine endoscopic submucosal dissection-induced ulcers

Polymer Journal(2024)

引用 0|浏览1
暂无评分
摘要
Endoscopic submucosal dissection (ESD) benefits patients in the early stages of cancer, but it poses various risks of complication. Strategies involving the application of clinically approved products to cover ulcers caused by ESD can reduce these complications, but the fixed nature of their properties limit the understanding of their effects on ulcer healing. This study was focused on Tetra–PEG gel, an innovative hydrogel with controllable physical properties made from a sulfhydryl–maleimide pair. The use of biocompatible polyethylene glycol (PEG) in Tetra–PEG gel may allow for its application as a biomaterial. The aims of our study were to identify the characteristics of a self-solidifying hydrogel for endoscopic application and to develop a new ulcer coating agent for post-ESD treatment. We developed a specialized double-lumen catheter and determined the optimal application conditions of the hydrogel. We examined the hydrodynamic properties of the gelling solutions and elucidated the pressure drop that occurred during device operation. Finally, by considering previous experimental results, we successfully applied the hydrogel to post-ESD ulcers in porcine stomachs. We believed that by further optimizing hydrogels with effectively controlled properties and by continuing to investigate them through animal experiments, we could expand our understanding of the relationships among material and ulcer healing properties and apply this knowledge to clinical applications. We explored the feasibility of Tetra-PEG gel, a controllable hydrogel, as a new biomaterial to develop a coating agent for post-ESD ulcers. We examined the optimal conditions for hydrogel application and developed a specialized catheter, then investigated its properties. Ultimately, we successfully used the optimized hydrogel and device to cover post-ESD ulcers in the porcine stomach. Further optimization of the hydrogel and ongoing research through animal experiments are expected to deepen our understanding of the material’s effects on ulcer healing and contribute to its clinical applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要