Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fast Li+ Transfer Scaffold Enables Stable High-Rate All-Solid-State Li Metal Batteries

Batteries(2024)

Cited 0|Views18
No score
Abstract
Sluggish transfer kinetics caused by solid–solid contact at the lithium (Li)/solid-state electrolyte (SE) interface is an inherent drawback of all-solid-state Li metal batteries (ASSLMBs) that not only limits the cell power density but also induces uneven Li deposition as well as high levels of interfacial stress that deteriorates the internal structure and cycling stability of ASSLMBs. Herein, a fast Li+ transfer scaffold is proposed to overcome the sluggish kinetics at the Li/SE interface in ASSLMBs using an α-MnO2-decorated carbon paper (CP) structure (α-MnO2@CP). At an atomic scale, the tunnel structure of α-MnO2 exhibits a great ability to facilitate Li+ adsorption and transportation across the inter-structure of α-MnO2@CP, leading to a high critical current density of 3.95 mA cm−2 at the Li/SE interface. Meanwhile, uniform Li deposition can be guided along the skeletons of α-MnO2@CP with minimized volume expansion, significantly improving the structural stability of the Li/SE interface. Based on these advantages, the ASSLMBs using α-MnO2@CP protected the Li anode and can stably cycle up to very high charge/discharge rates of 10C/10C, paving the way for developing high-power ASSLMBs.
More
Translated text
Key words
all-solid-state Li metal battery,Li metal anode,solid electrolyte,dendrite,Li+ transfer kinetics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined