Deformation and mutual influence of two cylindrical water columns in tandem subjected to shock wave

Chinese Physics B(2024)

引用 0|浏览0
暂无评分
摘要
The interaction between shock waves and multiple cylinders, referred to as shock–cylinder interaction (SCI), is an important phenomenon in science and engineering. However, its underlying physical mechanisms remain unclear. This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement (AMR)-based diffusion-interface model. The objective was to elucidate the changes in water-column deformation patterns over a wide range of Weber numbers. Statistical analysis was performed to examine the deformation of the water columns in vertical directions. Results reveal distinct deformation patterns between the two columns as the Weber number increases. Additionally, an extended exponential stretching law model was devised, and its improved capability to predict the deformation patterns was demonstrated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要