Non-PGM Hollow Fibre-Based After-treatment for Emission Control under Real Diesel Engine Exhaust Gas Conditions

Materials Today Sustainability(2024)

Cited 0|Views10
No score
Abstract
Hollow fibre (HF)-based technologies for emission control, as an alternative to the traditional monolithic technology, offers a promising route to the uptake of non-PGM catalytic systems. In this work, a series of Cu-doped LaCoO3 perovskites were investigated as potential non-PGM Diesel Oxidation Catalysts (DOC). Two HF-based modules, comprising single-channel (i.e., 1CM) and four-channel (i.e., 4CM) HFs respectively, were impregnated with the best catalyst candidate, and their performance was tested under real exhaust gas conditions, using a single-cylinder diesel engine. Compared to the 1CM, the 4CM demonstrated enhanced CO conversion, and reduced performance towards Total Hydrocarbon (THC) conversion. Overall, these findings reveal the influence of HF morphology on catalytic performance, and in turn, will contribute towards the refinement of HF-based technology for emission control, as well as enabling the transition towards non-PGM catalytic systems.
More
Translated text
Key words
Hollow fibre after-treatment,non-PGM catalysts,Diesel oxidation catalysts,Cu-doped LaCoO3,Real Exhaust Gas
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined