Single-Cell Local Stress Analysis in Tumoroids

Rick Rodrigues de Mercado, Klara Beslmüller, Daan Vorselen,Erik H.J. Danen,Thomas Schmidt

biorxiv(2024)

引用 0|浏览3
暂无评分
摘要
The reciprocal interplay between cancer cells and their local environment, mediated by mechanical forces, necessitates a deeper experimental understanding. This requires precise quantitative measurements of cellular forces within the intricate three-dimensional context of the extracellular matrix. While methods such as traction-force microscopy and micropillar-array technology have effectively reported on cellular forces in two-dimensional cell culture, extending these techniques to three dimensions has proven exceedingly challenging. In the current study, we introduced a novel approach utilizing soft, elastic hydrogel microparticles, resembling the size of cells, to serve as specific and sensitive traction probes in three-dimensional cell culture of collagen-embedded tumoroids. Our methodology relies on high-resolution detection of microparticle deformations. These deformations are translated into spatially resolved traction fields, reaching a spatial resolution down to 1 μm and thereby detecting traction forces as low as 30 Pa . By integrating this high-resolution traction analysis with three-dimensional cell segmentation, we reconstructed the traction fields originating from individual cells. Our methodology enables us to explore the relationships between cellular characteristics, extracellular traction fields, and cellular responses. We observed that cellular stresses ranged from 10 to 100 Pa, integrating to cellular forces from 0.1 to 100 nN, which correlated with the localization of the cells actin skeleton, and the interaction area that cells developed towards the microparticles. Interestingly, the interaction of cells with inert microparticles appeared to be governed by contact mechanics resembling that two soft particles. The methodology presented here not only addresses the challenges of extending traditional stress-probe techniques to three dimensions, but also opens a strategy for the study of specific interactions between cells and the local tumoroid environment in a strive to fully understand cell-matrix reciprocity in tissue. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要