Map Connectivity and Empirical Hardness of Grid-based Multi-Agent Pathfinding Problem.

International Conference on Automated Planning and Scheduling(2024)

引用 0|浏览1
暂无评分
摘要
We present an empirical study of the relationship between map connectivity and the empirical hardness of the multi-agent pathfinding (MAPF) problem. By analyzing the second smallest eigenvalue (commonly known as lambda2) of the normalized Laplacian matrix of different maps, our initial study indicates that maps with smaller lambda2 tend to create more challenging instances when agents are generated uniformly randomly. Additionally, we introduce a map generator based on Quality Diversity (QD) that is capable of producing maps with specified lambda2 ranges, offering a possible way for generating challenging MAPF instances. Despite the absence of a strict monotonic correlation with lambda2 and the empirical hardness of MAPF, this study serves as a valuable initial investigation for gaining a deeper understanding of what makes a MAPF instance hard to solve.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要