Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies

arxiv(2024)

Cited 0|Views3
No score
Abstract
Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy – even with the aid of machine learning potentials – is a challenge that requires sub-kJ/mol accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol based on fine-tuning of the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ/mol accuracy in the sublimation enthalpies and sub 1 and pressure. Exploiting this data efficiency, we explore simulations of hexagonal ice at the random phase approximation level of theory at experimental temperatures and pressures, calculating its physical properties, like pair correlation function and density, with good agreement with experiments. Our approach provides a way forward for predicting the stability of molecular crystals at finite thermodynamic conditions with the accuracy of correlated electronic structure theory.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined