Clinical evaluation of deep learning-enhanced lymphoma pet imaging with accelerated acquisition.

Journal of applied clinical medical physics(2024)

引用 0|浏览4
暂无评分
摘要
PURPOSE:This study aims to evaluate the clinical performance of a deep learning (DL)-enhanced two-fold accelerated PET imaging method in patients with lymphoma. METHODS:A total of 123 cases devoid of lymphoma underwent whole-body 18F-FDG-PET/CT scans to facilitate the development of an advanced SAU2Net model, which combines the advantages of U2Net and attention mechanism. This model integrated inputs from simulated 1/2-dose (0.07 mCi/kg) PET acquisition across multiple slices to generate an estimated standard dose (0.14 mCi/kg) PET scan. Additional 39 cases with confirmed lymphoma pathology were utilized to evaluate the model's clinical performance. Assessment criteria encompassed peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), a 5-point Likert scale rated by two experienced physicians, SUV features, image noise in the liver, and contrast-to-noise ratio (CNR). Diagnostic outcomes, including lesion numbers and Deauville score, were also compared. RESULTS:Images enhanced by the proposed DL method exhibited superior image quality (P < 0.001) in comparison to low-dose acquisition. Moreover, they illustrated equivalent image quality in terms of subjective image analysis and lesion maximum standardized uptake value (SUVmax) as compared to the standard acquisition method. A linear regression model with y = 1.017x + 0.110 ( R 2 = 1.00 ${R^2} = \;1.00$ ) can be established between the enhanced scans and the standard acquisition for lesion SUVmax. With enhancement, increased signal-to-noise ratio (SNR), CNR, and reduced image noise were observed, surpassing those of the standard acquisition. DL-enhanced PET images got diagnostic results essentially equavalent to standard PET images according to two experienced readers. CONCLUSION:The proposed DL method could facilitate a 50% reduction in PET imaging duration for lymphoma patients, while concurrently preserving image quality and diagnostic accuracy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要