Measuring Protein Biomarker Concentrations Using Antibody Tagged Magnetic Nanoparticles

BIOMEDICAL PHYSICS & ENGINEERING EXPRESS(2020)

Cited 11|Views30
No score
Abstract
Under physiological conditions biomarker concentrations tend to rise and fall over time e.g. for inflammation. Ex vivo measurements provide a snapshot in time of biomarker concentrations, which is useful, but limited. Approaching real time monitoring of biomarker concentration(s) using a wearable, implantable or injectable in vivo sensor is therefore an appealing target. As an early step towards developing an in vivo biomarker sensor, antibody (AB) tagged magnetic nanoparticles (NPs) are used here to demonstrate the in vitro measurement of similar to 5 distinct biomarkers with high specificity and sensitivity. In previous work, aptamers were used to target a given biomarker in vitro and generate magnetic clusters that exhibit a characteristic rotational signature quite different from free NPs. Here the method is expanded to detect a much wider range of biomarkers using polyclonal ABs attached to the surface of the NPs. Commercial ABs exist for a wide range of targets allowing accurate and specific concentration measurements for most significant biomarkers. We show sufficient detection sensitivity, using an in-house spectrometer to measure the rotational signatures of the NPs, to assess physiological concentrations of hormones, cytokines and other signaling molecules. Detection limits for biomarkers drawn mainly from pain and inflammation targets were: 10 pM for mouse Granzyme B (mGZM-B), 40 pM for mouse interferon-gamma (mIFN-gamma), 7 pM for mouse interleukin-6 (mIL-6), 40 pM for rat interleukin-6 (rIL-6), 40 pM for mouse vascular endothelial growth factor (mVEGF) and 250 pM for rat calcitonin gene related peptide (rCGRP). Much lower detection limits are certainly possible using improved spectrometers and nanoparticles.
More
Translated text
Key words
nanoparticles, magnetism, antibodies, protein detection, sensors
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined