Study on the influence of belt angle on tire grounding characteristics under longitudinal slip conditions

Jun-Ling Meng,Peng-Fei Sun,Shui-Ting Zhou, Yue Li, Lu-Wen Chen, Rui Mao

Journal of Engineered Fibers and Fabrics(2024)

引用 0|浏览0
暂无评分
摘要
Using ABAQUS software as a tool and 225/60R18 tire as the research object, a finite element model of the tire was established and longitudinal slip simulation was conducted based on the completion of longitudinal slip and rubber material tests. By comparing the tire-pavement contact stress under longitudinal slip conditions with different angles of belt layers and the stress on the first belt steel cord, the influence of different angles of belt layers on the grounding characteristics of tires were analyzed. The results showed that under static loading conditions, the trend of tire-pavement contact stress presented a symmetrical “W” shape. Under dynamic longitudinal slip conditions, the tire-pavement contact stress curve was significantly different from the static loading simulation, with significant fluctuation and presented an irregular “W” shape, and asymmetric distortion occurred with the change of slip rate. At higher slip rates (±20%), the higher the asymmetry of the grounding imprint at the 61° and 63° belt layer angles. At the 65° belt layer angle, the ground imprint is more evenly distributed on the tread. The curve of stress variation on the belt steel cord along the path is in an “M” shape, and the stress on the belt steel cord is mainly distributed symmetrically on the tire-pavement contact surface corresponding to the tire shoulder position. The higher the slip rate, the higher the asymmetry of the stress distribution on both sides of the belt steel cord. At 65° and 67° belt angles, the distribution of grounding imprints on the tread are more uniform, and the tread is less prone to deformation, resulting in lower tread wear.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要