Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS2 Nanocrystal Layer.

ACS applied materials & interfaces(2024)

Cited 0|Views4
No score
Abstract
Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS2) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 105 cm-1 in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS2 NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm-2 in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 μC·cm-2 at a low NIR intensity of 0.5 mW·mm-2. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS2 NCs for photovoltaic retinal prostheses.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined