Neuronal differentiation requires BRAT1 complex to remove REST from chromatin.

Proceedings of the National Academy of Sciences of the United States of America(2024)

引用 0|浏览0
暂无评分
摘要
Repressor element-1 silencing transcription factor (REST) is required for the formation of mature neurons. REST dysregulation underlies a key mechanism of neurodegeneration associated with neurological disorders. However, the mechanisms leading to alterations of REST-mediated silencing of key neurogenesis genes are not known. Here, we show that BRCA1 Associated ATM Activator 1 (BRAT1), a gene linked to neurodegenerative diseases, is required for the activation of REST-responsive genes during neuronal differentiation. We find that INTS11 and INTS9 subunits of Integrator complex interact with BRAT1 as a distinct trimeric complex to activate critical neuronal genes during differentiation. BRAT1 depletion results in persistence of REST residence on critical neuronal genes disrupting the differentiation of NT2 cells into astrocytes and neuronal cells. We identified BRAT1 and INTS11 co-occupying the promoter region of these genes and pinpoint a role for BRAT1 in recruiting INTS11 to their promoters. Disease-causing mutations in BRAT1 diminish its association with INTS11/INTS9, linking the manifestation of disease phenotypes with a defect in transcriptional activation of key neuronal genes by BRAT1/INTS11/INTS9 complex. Finally, loss of Brat1 in mouse embryonic stem cells leads to a defect in neuronal differentiation assay. Importantly, while reconstitution with wild-type BRAT1 restores neuronal differentiation, the addition of a BRAT1 mutant is unable to associate with INTS11/INTS9 and fails to rescue the neuronal phenotype. Taken together, our study highlights the importance of BRAT1 association with INTS11 and INTS9 in the development of the nervous system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要