谷歌浏览器插件
订阅小程序
在清言上使用

An algorithmic account for how humans efficiently learn, transfer, and compose hierarchically structured decision policies

Jing-Jing Li,Anne Collins

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Learning structures that effectively abstract decision policies is key to the flexibility of human intelligence. Previous work has shown that humans use hierarchically structured policies to efficiently navigate complex and dynamic environments. However, the computational processes that support the learning and construction of such policies remain insufficiently understood. To address this question, we tested 1,026 human participants on a decision-making task where they could learn, transfer, and recompose multiple sets of hierarchical policies. We propose a novel algorithmic account for the learning processes underlying observed human behavior. We show that humans rely on compressed policies over states in early learning, which gradually unfold into hierarchical representations via meta-learning and Bayesian inference. Our modeling evidence suggests that these hierarchical policies are structured in a temporally backward, rather than forward, fashion. Taken together, these algorithmic architectures characterize how the interplay between reinforcement learning, policy compression, meta-learning, and working memory supports structured decision-making and compositionality in a resource-rational way.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要