谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Thermal Stability of High-Entropy Alloy Nanoparticles Evaluated by In Situ TEM Observations.

Nano letters(2024)

引用 0|浏览3
暂无评分
摘要
High-entropy alloy (HEA) nanoparticles (NPs) have attracted attention in several fields because of their fascinating properties. The high mechanical strength, good thermal stability, and superior corrosion resistance of HEAs, which are derived from their high configurational entropy, are attractive features. Herein, we investigated the thermal stability of FeCoNiCuPd HEA NPs on reduced graphene oxide via in situ transmission electron microscopy observations at elevated temperatures. The HEA NPs maintained their structure, size, and composition at 700 °C, and their size gradually decreased accompanied by the preferential sublimation of Cu. On the contrary, the deterioration of the monometallic Pd NPs begins at temperatures greater than 700 °C according to Ostwald ripening, which involves the migration of adatoms or mobile molecular species. Theoretical calculations revealed that the detachment of adatoms from clusters (i.e., the first step of Ostwald ripening) was suppressed in the case of HEA NPs because of the high-configuration-entropy effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要