谷歌浏览器插件
订阅小程序
在清言上使用

Capturing dynamics and thermodynamics of a three-level quantum heat engine via programmable quantum circuits

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
This research employs the Kraus representation and Sz.-Nagy dilation theorem to model a three-level quantum heat on quantum circuits, investigating its dynamic evolution and thermodynamic performance. The feasibility of the dynamic model is validated by tracking the changes of population. On the basis of reinforcement learning algorithm, the optimal cycle of the quantum heat engine for maximal average power is proposed and verified by the thermodynamic model. The stability of quantum circuit simulations is scrutinized through a comparative analysis of theoretical and simulated results, predicated on an orthogonal test. These results affirm the practicality of simulating quantum heat engines on quantum circuits, offering potential for substantially curtailing the experimental expenses associated with the construction of such engines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要