Surface Encapsulation of Layered Oxide Cathode Material with NiTiO3 for Enhanced Cycling Stability of Na-Ion Batteries

Chinese Physics B(2024)

Cited 0|Views9
No score
Abstract
In Na-ion batteries, O3-type layered oxide cathode materials encounter challenges such as particle cracking, oxygen loss, electrolyte side reactions, and multi-phase transitions during the charge/discharge process. This study focuses on surface coating with NiTiO3 achieved via secondary heat treatment using a coating precursor and the surface material. Through in-situ X-ray diffraction (XRD) and differential electrochemical mass spectrometry (DEMS), along with crystal structure characterizations of post-cycling materials, it was determined that the NiTiO3 coating layer facilitates the formation of a stable lattice structure, effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte. This enhancement in cycling stability is evidenced by a capacity retention of approximately 74% over 300 cycles at 1C, marking a significant 30% improvement over the initial sample. Furthermore, notable advancements in rate performance were observed. Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase, presenting a novel approach for designing layered oxide cathodes with higher energy density.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined