Near-infrared Photometry of the Moon’s Surface with Passive Radiometry from the Lunar Orbiter Laser Altimeter (LOLA)

The Planetary Science Journal(2024)

引用 0|浏览3
暂无评分
摘要
Examining the reflectance of the Moon’s surface across a broad range of viewing geometries through photometric analysis can reveal physical and geological properties of its regolith. Since 2013 December, the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter (LRO) has been operating as a near-infrared (1064 nm) passive radiometer when its laser is turned off. We present a new analysis of this data set spanning roughly 8 yr and covering the surface up to high latitudes in both hemispheres. We apply semiempirical phase functions to find a lower photometric slope and a narrower opposition effect for the highlands than the maria, consistent with theoretical expectations given the higher albedo of the highlands. Examining various geological properties at global scales shows that, in the highlands, iron abundance (FeO) and optical maturity (OMAT) are the dominant factors affecting the phase function, with a smaller influence from surface slope. In the maria, FeO is the dominant factor, with smaller influences from OMAT, surface slope, and TiO _2 . Submicroscopic iron abundance (SMFe) has a similar effect to OMAT in both highlands and maria. Analysis at specific sites, including the Reiner Gamma swirl and several silicic anomalies, indicates that the phase functions are consistent with the global data for similar FeO and OMAT. Thermophysical properties inferred from surface temperature observations by the Diviner Lunar Radiometer Experiment on board LRO do not affect the 1064 nm phase function, possibly due to a difference between their depth scale and LOLA’s sensing depth.
更多
查看译文
关键词
The Moon,Lunar regolith,Lunar science,Lunar features,Remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要