Metric structural human connectomes: localization and multifractality of eigenmodes

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
In this study, we explore the fundamental principles behind the architecture of the human brain's structural connectome, from the perspective of spectral analysis of Laplacian and adjacency matrices. Building on the idea that the brain strikes a balance between efficient information processing and minimizing wiring costs, we aim to understand the impact of the metric properties of the connectome and how they relate to the existence of an inherent scale. We demonstrate that a simple generative model, combining nonlinear preferential attachment with an exponential penalty for spatial distance between nodes, can effectively reproduce several key characteristics of the human connectome, including spectral density, edge length distribution, eigenmode localization and local clustering properties. We also delve into the finer spectral properties of the human structural connectomes by evaluating the inverse participation ratios (IPR_q) across various parts of the spectrum. Our analysis reveals that the level statistics in the soft cluster region of the Laplacian spectrum deviate from a purely Poisson distribution due to interactions between clusters. Additionally, we identified scar-like localized modes with large IPR values in the continuum spectrum. We identify multiple fractal eigenmodes distributed across different parts of the spectrum, evaluate their fractal dimensions and find a power-law relationship in the return probability, which is a hallmark of critical behavior. We discuss the conjectures that a brain operates in the Griffiths or multifractal phases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要