Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury.

Akash Kumar Singh, Amrish Rai,Ila Joshi, Damodara N Reddy,Rajdeep Guha, Kumari Alka,Shubha Shukla,Srikanta Kumar Rath,Aamir Nazir, James P Clement, Tapas K Kundu

ACS chemical neuroscience(2024)

引用 0|浏览5
暂无评分
摘要
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要