Chrome Extension
WeChat Mini Program
Use on ChatGLM

Mastering thermal transport across carbon nanotube contacts through morphological control

Communications Materials(2024)

Cited 0|Views2
No score
Abstract
Thermally conductive nanomaterials hold great promise for applications in thermal management. However, the interfaces between nanomaterials can significantly impede heat flow, and a comprehensive understanding of thermal transport across nanoscale contacts is highly desired. Here, by integrating a movable nano-manipulator within an electron microscope with a nanofabricated thermal sensor, we adjusted the contact positions, overlapping length, and crossing angles between two carbon nanotubes (CNTs) as desired, while concurrently measuring the thermal contact resistance (TCR) at the van der Waals junction. The TCR far surpassed that of the studied 6 μm-long CNTs, particularly in contacts affected by inevitable nanoscale surface contamination. The TCR per unit area exhibited significant variations across different contact morphologies, spanning two orders of magnitude even for identical pairs of samples, attributable to structural non-uniformity within the CNTs. This in-situ approach and the notable morphology effects can guide the control of heat at the nanoscale. Thermally conductive nanomaterials are promising for applications in thermal management. Here, morphological control of the van der Waals contact between carbon nanotubes, by adjustment of contact positions, overlapping length, and crossing angles, allows the authors to elucidate the interfacial thermal transport and optimize heat flow at the nanoscale.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined