Emergence of two distinct phase transitions in monolayer CoSe2 on graphene

Nano Convergence(2024)

引用 0|浏览1
暂无评分
摘要
Dimensional modifications play a crucial role in various applications, especially in the context of device miniaturization, giving rise to novel quantum phenomena. The many-body dynamics induced by dimensional modifications, including electron-electron, electron-phonon, electron-magnon and electron-plasmon coupling, are known to significantly affect the atomic and electronic properties of the materials. By reducing the dimensionality of orthorhombic CoSe2 and forming heterostructure with bilayer graphene using molecular beam epitaxy, we unveil the emergence of two types of phase transitions through angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements. We disclose that the 2 × 1 superstructure is associated with charge density wave induced by Fermi surface nesting, characterized by a transition temperature of 340 K. Additionally, another phase transition at temperature of 160 K based on temperature dependent gap evolution are observed with renormalized electronic structure induced by electron-boson coupling. These discoveries of the electronic and atomic modifications, influenced by electron-electron and electron-boson interactions, underscore that many-body physics play significant roles in understanding low-dimensional properties of non-van der Waals Co-chalcogenides and related heterostructures.
更多
查看译文
关键词
Transition metal chalcogenides,Charge-density wave,Electron-boson coupling,Molecular beam epitaxy,Angle-resolved photoemission spectroscopy,Scanning tunneling microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要