HIF-1α-induced expression of the m6A reader YTHDF1 inhibits the ferroptosis of nucleus pulposus cells by promoting SLC7A11 translation.

Aging cell(2024)

Cited 0|Views6
No score
Abstract
The nucleus pulposus is in a hypoxic environment in the human body, and when intervertebral disc degeneration (IVDD) occurs, the hypoxic environment is disrupted. Nucleus pulposus cell (NPC) ferroptosis is one of the causes of IVDD. N6-methyladenosine (m6A) and its reader protein YTHDF1 regulate cellular activities by affecting RNA metabolism. However, the regulation of ferroptosis in NPCs by m6A-modified RNAs under hypoxic conditions has not been as well studied. In this study, through in vitro and in vivo experiments, we explored the underlying mechanism of HIF-1α and YTHDF1 in regulating ferroptosis in NPCs. The results indicated that the overexpression of HIF-1α or YTHDF1 suppressed NPC ferroptosis; conversely, the knockdown of HIF-1α or YTHDF1 increased ferroptosis levels in NPCs. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region. Polysome profiling results showed that YTHDF1 promoted the translation of SLC7A11 and consequently the expression of the anti-ferroptosis protein GPX4 by binding to m6A-modified SLC7A11 mRNA. In conclusion, HIF-1α-induced YTHDF1 expression reduces NPC ferroptosis and delays IVDD by promoting SLC7A11 translation in a m6A-dependent manner.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined