Multi input multi output lateral dynamics control of an electric vehicle

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING(2024)

引用 0|浏览1
暂无评分
摘要
Full electric vehicles with multiple and independently controlled powertrains allow for an improvement of vehicle handling capabilities both in steady state and in transient manoeuvres. This paper focuses on active lateral dynamics control of an electric vehicle equipped with 4 in-wheel motors and active rear steering. An integral terminal sliding mode controller (ITSMC) is derived starting from the linearized single track model with the addition of the rear wheel steering angle. The controller has a multi-input multi-output structure and is designed to track vehicle yaw rate and sideslip angle reference quantities through torque vectoring and active rear steering actuation. A novel approach for calculating reference sideslip angle and yaw rate using a logistic function is also presented in this paper. The ITSMC relies on real time knowledge of sideslip angle which cannot be measured in the real vehicle, thus it is estimated through the addition of an extended Kalman filter to the control loop. The performance of the controller is tested with VI-CarRealTime 14 degrees of freedom nonlinear model both for steady state and transient manoeuvres. Simulation results show a good tracking of the reference value with no chattering issues and with an improved behaviour if compared to a sliding mode controller from literature.
更多
查看译文
关键词
Active rear steering,extended Kalman filter,integral terminal sliding mode control,lateral dynamics control,multi-Input multi-output control,torque vectoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要