Multi input multi output lateral dynamics control of an electric vehicle

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING(2024)

Cited 0|Views0
No score
Abstract
Full electric vehicles with multiple and independently controlled powertrains allow for an improvement of vehicle handling capabilities both in steady state and in transient manoeuvres. This paper focuses on active lateral dynamics control of an electric vehicle equipped with 4 in-wheel motors and active rear steering. An integral terminal sliding mode controller (ITSMC) is derived starting from the linearized single track model with the addition of the rear wheel steering angle. The controller has a multi-input multi-output structure and is designed to track vehicle yaw rate and sideslip angle reference quantities through torque vectoring and active rear steering actuation. A novel approach for calculating reference sideslip angle and yaw rate using a logistic function is also presented in this paper. The ITSMC relies on real time knowledge of sideslip angle which cannot be measured in the real vehicle, thus it is estimated through the addition of an extended Kalman filter to the control loop. The performance of the controller is tested with VI-CarRealTime 14 degrees of freedom nonlinear model both for steady state and transient manoeuvres. Simulation results show a good tracking of the reference value with no chattering issues and with an improved behaviour if compared to a sliding mode controller from literature.
More
Translated text
Key words
Active rear steering,extended Kalman filter,integral terminal sliding mode control,lateral dynamics control,multi-Input multi-output control,torque vectoring
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined