谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Experimental and simulation studies on ELM characteristics under a plasma current ramping up discharge on EAST

AIP ADVANCES(2024)

引用 0|浏览9
暂无评分
摘要
Previous experimental results show that the poloidal mode spacing of the filamentary structures increases and the dominant toroidal mode number decreases in the edgelocalized mode (ELM) rising phase with increasing plasma current. In addition, the experimental results in this paper show that the energy loss ratio of the pedestal (Delta W/W-ped) decreases as the edge safety factor (q95) increases. The BOUT++ three-field two-fluid model can reproduce the experimental results and provide a possible explanation mechanism. The pedestal density plays an important role in the characteristics of filamentary structures as the current ramps up. On the one hand, the resistivity related to the pedestal density drives the instability of the peeling-ballooning mode, and the resistive effect is stronger in the high current case, making the dominant toroidal mode number lower and the corresponding poloidal mode spacing wider in the high current case. A low q(95) corresponds to a high pedestal collision rate and a high pedestal energy loss ratio. On the other hand, the ELM crash process is dominated by resistivity, so the ratio of pedestal energy loss caused by ELM is not inversely proportional to the pedestal collision rate. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要