Efficient reliability analysis of stochastic dynamic first-passage problems by probability density evolution analysis with subset supported point selection

Engineering Structures(2024)

Cited 0|Views2
No score
Abstract
This study introduces a novel point selection procedure for the Probability Density Evolution Method (PDEM) to estimate time-dependent reliability and failure probabilities in dynamic systems under first-passage failure conditions. The method integrates and modifies features of the Subset simulation procedure to adaptively generate dependent sample sets suitable for a reliability analysis by a direct probability integration approach levering PDEM. Performance function assessments are used as weighting factors in the Subset supported Point Selection (S-PS), enhancing the ultimate failure probability estimation accuracy. The presented approach effectively identifies samples in the failure region, particularly benefiting for dynamic systems under stochastic excitation, tested with random dimensions up to 60. It also offers a computationally efficient structural reliability estimation procedure by analyzing full time–history responses. The proposed method provides deeper insights into rare failure events and mechanisms through the visualization of intermediate results. This research presents an advanced framework for estimating structural reliability and understanding critical events in dynamic systems.
More
Translated text
Key words
Stochastic structural dynamics,Reliability analysis,First-passage failure probability,Stochastic processes,Probability density evolution method
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined