CAD-based data augmentation and transfer learning empowers part classification in manufacturing

The International Journal of Advanced Manufacturing Technology(2023)

Cited 0|Views10
No score
Abstract
Especially in manufacturing systems with small batches or customized products, as well as in remanufacturing and recycling facilities, there is a wide variety of part types that may be previously unseen. It is crucial to accurately identify these parts based on their type for traceability or sorting purposes. One approach that has shown promising results for this task is deep learning–based image classification, which can classify a part based on its visual appearance in camera images. However, this approach relies on large labeled datasets of real-world images, which can be challenging to obtain, especially for parts manufactured for the first time or whose appearance is unknown. To overcome this challenge, we propose generating highly realistic synthetic images based on photo-realistically rendered computer-aided design (CAD) data. Using this commonly available source, we aim to reduce the manual effort required for data generation and preparation and improve the classification performance of deep learning models using transfer learning. In this approach, we demonstrate the creation of a parametric rendering pipeline and show how it can be used to train models for a 30-class classification problem with typical engineering parts in an industrial use case. We also demonstrate how our method’s entropy gain improves the classification performance in various deep image classification models.
More
Translated text
Key words
Part classification,Object recognition,Machine learning,Data augmentation and synthesis,CAD-based rendering,Transfer learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined