Chrome Extension
WeChat Mini Program
Use on ChatGLM

Improving the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to SyXIP-I by site-directed mutagenesis

International Journal of Biological Macromolecules(2024)

Cited 0|Views4
No score
Abstract
The aim of this study was to improve the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to XIP in cereal flour. Site saturation mutagenesis was performed using computer-aided redesign. Firstly, based on multiple primary structure alignments, the amino acid residues in the active site architecture were identified, and specific residue T144 in the thumb region of FgXyn11C was selected for site-saturation mutagenesis. After screening, FgXyn11CT144F was selected as the best mutant, as it displayed the highest enzymatic activity and resistance simultaneously compared to other mutants. The specific activity of FgXyn11CT144F was 208.8 U/mg and it exhibited complete resistance to SyXIP-I. Compared with the wild-type, FgXyn11CT144F displayed similar activity and the most resistant against SyXIP-I. The optimal temperature and pH of the wild-type and purified FgXyn11CT144F were similar at pH 5.0 and 30 °C. Our findings provided preliminary insight into how the specific residue at position 144 in the thumb region of FgXyn11C influenced the enzymatic properties and interacted with SyXIP-I. The inhibition sensitivity of FgXyn11C was reduced through directed evolution, leading to creation of the mutant enzyme FgXyn11CT144F. The FgXyn11CT144F resistance to SyXIP-I has potential application and can also provide references for engineering other resistant xylanases of the GHF11.
More
Translated text
Key words
Site-directed mutagenesis,Xylanase inhibitor protein,Homology modeling,Resistance,Xylanase
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined