A comparative analysis on charging performance of triplex-tube heat exchanger under various configurations of composite phase change material

Thermal Science and Engineering Progress(2024)

引用 0|浏览2
暂无评分
摘要
In present work, the melting performance of triplex-tube latent heat thermal energy storage (LHTES) unit was numerically studied using equal volumes of PCM and metal foam composite PCM (CPCM) in various arrangements. For the n-eicosane (as PCM), the study was conducted at the fixed Rayleigh number (Ra) = 4.08x107, Prandtl number (Pr) = 62.9, and Stefan number (Ste) = 0.14. The results showed that positioning the metal foam on the bottom side and distributing segmented CPCM with alternating PCM zones effectively improved the system performance. Moreover, this also prevents the overheating of thermal layers in the LHTES unit. While the model labelled M2 exhibited the highest economic efficiency among all isotropic models, its low dimensionless thermal energy storage (TES) density (i.e., q’ ∼ 0.6) led this study to focus on models falling under the category having a TES density of ∼ 0.8. Compared to a pure PCM model, the configurations under equal volume ratio category demonstrated up to ∼ four times higher TES rate (p’) and the significant reduction of ∼ 75 % in melting time. The optimized isotropic model achieved the highest TES rate per unit cost with peak value of ∼ 3 at a price ratio (N) of 1. Lastly, the testing of metal foam anisotropy on the chosen design showed a substantial increase in melting/heat storage rates. The largest drop of ∼ 33 % in the total melting time was noticed for model M2 as compared to isotropic case.
更多
查看译文
关键词
Triplex-tube,Melting performance,Phase change material,Metal foam,Configurational optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要