谷歌浏览器插件
订阅小程序
在清言上使用

New insight on DNA isolation from single automated recovered Ceratocystis platani conidia

crossref(2024)

引用 0|浏览10
暂无评分
摘要
Single-cell technology is increasingly used to analyze the basis of molecular regulation and provide insights into different aspects of human diseases. Such technology is a breakthrough approach to study blood cancers by characterizing molecular information on a genome-wide scale at the single-cell level. These methods can be easily and successfully transferred to tracheomycotic plant pathogens, which cause host wilt. Ceratocystis platani is the causal agent of the Canker stain disease of plane tree (Platanus spp.), a lethal wilt disease spreading in Europe. To displace and separate different C. platani conidia types a dielectrophoretic approach was tested. The DNA of each conidium was isolated and analyzed and the target DNA was identified by a specific qPCR marker and by sequencing the amplicon. Our results showed that this technology is applicable to vascular plant pathogens. The fungal DNA was successfully extracted from single or pooled conidia and identified by both methods after whole genome amplification. The use of the single-cell technology will provide a new approach to the study of plant vascular diseases, allowing the study of single-spore molecular and physiological features not detectable in complex biological mixtures. Author summary In recent years, technologies for single-cell isolation have been developed in the study of human diseases, such as cancers, capable of obtaining genetic information at the single-cell level. In this study, these methods were transferred to a plant pathogen, Ceratocystis platani, which causes a lethal disease of plane tree. The single cell technique used was able to separate the different types of conidia of C. platani and analyze the DNA within each conidium. The use of single cell technology represents an important tool for the study of plant vascular diseases by allowing the study of molecular mechanisms that are difficult to detect in complex biological matrices. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要