Multiple synergistic antibacterial melamine-impregnated paper based on nano Ag-doped ZIF-8

Jinrong He,Wei Qu, Yun Feng, Jinrui Jiang, Jiaming Luo,Yuzhang Wu,Limin Peng

Chemical Engineering Journal(2024)

引用 0|浏览1
暂无评分
摘要
Melamine-impregnated paper, a decorative material in furniture and interior design, could potentially impede the spread of indoor bacteria if it possesses antibacterial properties. Here, nano Ag-doped ZIF-8 (Ag@ZIF-8) was synthesized using ion exchange and in-situ chemical reduction strategies, followed by incorporating it into melamine-impregnated paper. The ion exchange mechanism of Zn2+ and Ag+ during ion exchange reactions was investigated. The structure of Ag@ZIF-8 was well-defined, with Ag nanoparticles evenly distributed on the surface of ZIF-8. Ag@ZIF-8 showed good thermal stability at 400 °C, meeting the requirements for the hot-pressing process of the melamine-impregnated paper. Ag@ZIF-8 exhibited enhanced ROS generation under visible light compare to ZIF-8, which was attributed to its reinforced light absorption and charge carrier separation facilitated by the localized surface plasmon resonance (LSPR) effect. The antibacterial activity of Ag@ZIF-8 was better than ZIF-8, which was attributed to the multiple-synergistic antibacterial mechanisms of the ion release and ROS generation. Specifically, the 10-Ag@ZIF-8 exhibited MIC of 128 μg/mL and 64 μg/mL against E. coli and S. aureus, respectively. The signal intensity of •O2 − induced by 10-Ag@ZIF-8 was 4.38 times higher than that of ZIF-8. As the addition of Ag@ZIF-8 increased, the antibacterial performance of melamine-impregnated paper improved. Considering the antibacterial property and economy of melamine-impregnated paper, 0.20 wt% was the optimal amount for 10-Ag@ZIF-8 decorated blockboard. This study proposes a novel approach for synthesizing MOF-based melamine-impregnated paper with antibacterial properties, aiming to reduce bacterial spread, minimize disease risks, and contribute to lowering overall healthcare costs.
更多
查看译文
关键词
ZIF-8,Melamine-impregnated paper,Antibacterial activity,Reactive oxygen species,Antibacterial mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要