Global Transboundary Transmission Path and Risk of Mpox Revealed with Least Cost Path Model

International Journal of Infectious Diseases(2024)

引用 0|浏览0
暂无评分
摘要
Objectives The recent surge of Mpox outbreaks in multiple countries has garnered global attention. As of July 12, 2023, there have been 88,288 reported cases of Mpox worldwide. Although genetic variation was not found to be the cause of the epidemic outbreak, the reasons for its rapid spread remain unclear. Methods Using the niche method, this study identified high-risk regions for Mpox and determined that human factors are the primary contributors to global risks. To further investigate, a travel network resistance surface was created based on various modes of transportation and was combined with sea, airline, highway, and railway routes to construct the least cost path for human travel networks in different risk areas. Results The results indicated that high-risk regions for Mpox are mainly concentrated in Europe and the United States, with large risk ranges and high-risk values. The least cost path revealed three primary transmission paths rely on developed transportation networks, including internal transmission in North America, Europe-Africa, and Europe-Asia-Africa. These findings suggest that human activities, facilitated by developed travel networks, remain the main contributing factor to the spread. Conclusions In summary, based on the Mpox epidemic report, this study conducted risk prediction and driving factor analysis on Mpox. The research results indicate that human use of transportation for long-distance activities is a key factor leading to the rapid spread of the virus. Subsequently, we focused on studying the global transmission pathways of Mpox and revealed several transmission pathways with high global population migration rates by constructing the LCPs between different high-risk areas. This study also emphasizes the importance of applying early monitoring data of Mpox to model risk prediction in controlling emerging infectious diseases, providing a new perspective for controlling Mpox and similar diseases.
更多
查看译文
关键词
Mpox,Ecological niche modeling,MaxEnt,Risk analysis,Least cost path,Travel network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要