LabVIEW-Enabled Synthetic Signal for Empowering Fetal-Maternal Healthcare

ECS Journal of Solid State Science and Technology(2024)

Cited 0|Views0
No score
Abstract
Abstract Biomedical signal processing has advanced to the point that tools and methods are now available to doctors to diagnose and track medical conditions connected to pregnancy. However, it is extremely difficult for researchers to look into novel procedures and approaches to uncover underlying pathological abnormalities associated with high-risk pregnancies due to the scarcity of high-quality medical databases of pregnant women. In this study, a LabVIEW software environment is used to precisely design a bio-physiological signal generator (BPSG) for use in feto-maternal health assessment applications. McSharry's dynamical ECG model served as inspiration for the methods utilized to create the proposed time-domain mathematical model. The BPSG is capable of generating various realistic synthetic signals like respiration signal, pulse plethysmography (PPG) signal, phonocardiography (PCG) signal, maternal ECG (MECG) signal, fetal ECG (FECG) signal, abdominal ECG (AECG) signa,l and umbilical blood flow (UBF) velocimetry signals with corresponding Doppler indices. It is possible to create synthetic signals for both healthy and unhealthy conditions. Synthetic signal facilitates the testing and calibration of new diagnostic procedures, denoising algorithms, feature extraction processes, and instrumentation, all of which contribute to the prompt prediction of an overall health state of expectant mother.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined